722 research outputs found

    Hard Decision Cooperative Spectrum Sensing Based on Estimating the Noise Uncertainty Factor

    Full text link
    Spectrum Sensing (SS) is one of the most challenging issues in Cognitive Radio (CR) systems. Cooperative Spectrum Sensing (CSS) is proposed to enhance the detection reliability of a Primary User (PU) in fading environments. In this paper, we propose a hard decision based CSS algorithm using energy detection with taking into account the noise uncertainty effect. In the proposed algorithm, two dynamic thresholds are toggled based on predicting the current PU activity, which can be successfully expected using a simple successive averaging process with time. Also, their values are evaluated using an estimated value of the noise uncertainty factor. These dynamic thresholds are used to compensate the noise uncertainty effect and increase (decrease) the probability of detection (false alarm), respectively. Theoretical analysis is performed on the proposed algorithm to deduce its enhanced false alarm and detection probabilities compared to the conventional hard decision CSS. Moreover, simulation analysis is used to confirm the theoretical claims and prove the high performance of the proposed scheme compared to the conventional CSS using different fusion rules.Comment: 5 pages, 4 figures, IEEE International Conference on Computer Engineering and Systems (ICCES 2015). arXiv admin note: text overlap with arXiv:1505.0558

    Solar Energy Cost Efficiency: A Simulated Case Study in the Egyptian Context

    Get PDF
    In Egypt, electric energy coming from fossil fuels represents around 85% of total electricity requirements. However, the supply of energy in the Arab world is expected to run dry in the coming 30-50 years. With the increase in energy needs, rise in fossil fuel prices, and the swelling of green house gas emissions, the use of renewable and more environment-friendly energy sources to supply power is gaining increased attention. Being a country on the Sunbelt, Egypt has great potential in utilizing solar energy to generate energy products and electricity. However, solar energy is still abandoned in Egypt due to its high costs. This paper first aims to examine the relative significance of several accounting and economic related variables to reduce solar energy costs. To be more specific, the paper seeks to examine the effect of using accounting and finance-based factors, related to depreciation schemes and financing options, to decrease solar energy costs. These factors are considered as a substitute for direct subsidies which are difficult to implement because of the narrow financial scope of the Egyptian government. The results of the study provide a number of policy implications that can be applied to make solar energy closer to cost-competitiveness and contribute to solve the energy problem in Egypt.Solar Energy, Cost Efficiency, Government Incentives

    Mode I stress intensity factor with various crack types

    Get PDF
    Presence of cracks in mechanical components needs much attention, where the stress field is affected by cracks and the propagation of cracks may be occurred causing the damage. The objective of this paper is to present an investigation of crack type effect on crack severity in a finite plate. Three cases of cracked plate with three different types of cracks are assumed in this work, i.e., single edge crack, center crack and double edge crack. 2D numerical models of cases of cracked plate are established in finite element analysis (FEA), ANSYS software by adopting PLANE 183 element. Values of FEA mode I stress intensity factor SIF and Von-Mises stress at crack apex are determined for cases of cracked plate under tensile stress with different values. To identify the crack severity, the comparison of FEA results for different cracked cases is made. The comparison showed that, single edge cracked plate (SECP) has the maximum values of mode I SIF and Von-Mises stress at crack apex, i.e. the greatest crack severity is considered. Also, values of FEA Von-Mises stress at crack apex for center cracked plate (CCP) are moderate and for double edge cracked plate (DECP) are the minimum. Besides, in case of high crack lengths, it is found that, FEA results of mode I SIF in case of (CCP) are higher than those of in case of (DECP). Consequently, crack severity is considered as moderate in case of (CCP) and the minimum in case of (DECP). Empirical formulas are used to approximately estimate mode I SIF for all the case studies of cracked plate in this study and the results are compared to those of FEA. A good agreement between analytical and FEA results has been showed by this comparison

    Cloud Cooperated Heterogeneous Cellular Networks for Delayed Offloading using Millimeter Wave Gates

    Get PDF
    Increasing the capacity of wireless cellular network is one of the major challenges for the coming years. A lot of research works have been done to exploit the ultra-wide band of millimeter wave (mmWave) and integrate it into future cellular networks. In this paper, to efficiently utilize the mmWave band while reducing the total deployment cost, we propose to deploy the mmWave access in the form of ultra-high capacity mmWave gates distributed in the coverage area of the macro basestation (Macro BS). Delayed offloading is also proposed to proficiently exploit the gates and relax the demand of deploying a large number of them. Furthermore, a mobility-aware weighted proportional fair (WPF) user scheduling is proposed to maximize the intra-gate offloading efficiency while maintaining the long-term offloading fairness among the users inside the gate. To efficiently link the mmWave gates with the Macro BS in a unified cellular network structure, a cloud cooperated heterogeneous cellular network (CC-HetNet) is proposed. In which, the gates and the Macro BS are linked to the centralized radio access network (C-RAN) via high-speed backhaul links. Using the concept of control/user (C/U) plane splitting, signaling information is sent to the UEs through the wide coverage Macro BS, and most of users’ delayed traffic is offloaded through the ultra-high capacity mmWave gates. An enhanced access network discovery and selection function (eANDSF) based on a network wide proportional fair criterion is proposed to discover and select an optimal mmWave gate to associate a user with delayed traffic. It is interesting to find out that a mmWave gate consisting of only 4 mmWave access points (APs) can offload up to 70 GB of delayed traffic within 25 sec, which reduces the energy consumption of a user equipment (UE) by 99.6 % compared to the case of only using Macro BS without gate offloading. Also, more than a double increase in total gates offloaded bytes is obtained using the proposed eANDSF over using the conventional ANDSF proposed by 3GPP due to the optimality in selecting the associating gate. 

    Millimeter Wave Beamforming Training: A Reinforcement Learning Approach

    Get PDF
    Beamforming training (BT) is considered as an essential process to accomplish the communications in the millimeter wave (mmWave) band, i.e., 30 ~ 300 GHz. This process aims to find out the best transmit/receive antenna beams to compensate the impairments of the mmWave channel and successfully establish the mmWave link. Typically, the mmWave BT process is highly-time consuming affecting the overall throughput and energy consumption of the mmWave link establishment. In this paper, a machine learning (ML) approach, specifically reinforcement learning (RL), is utilized for enabling the mmWave BT process by modeling it as a multi-armed bandit (MAB) problem with the aim of maximizing the long-term throughput of the constructed mmWave link. Based on this formulation, MAB algorithms such as upper confidence bound (UCB), Thompson sampling (TS), epsilon-greedy (e-greedy), are utilized to address the problem and accomplish the mmWave BT process. Numerical simulations confirm the superior performance of the proposed MAB approach over the existing mmWave BT techniques.   

    Damage severity for cracked simply supported beams

    Get PDF
    This paper investigated the static and dynamic behaviors of isotropic cracked simply supported beam using finite element analysis (FEA), ANSYS software. Modal and harmonic vibration analysis of intact and damaged beam were performed in order to extract mode shapes of bending vibration, natural frequencies and obtain frequency response diagram. Static finite element analysis of undamaged and damaged simply supported beam was carried out to determine zero frequency deflection, then stiffness of intact and cracked beam was computed using conventional formula. Crack damage severity of damaged beam was calculated and it is noticed that as crack position is increased from left hand support of beam up to central point and crack depth is increased, then crack damage severity increases. The effect of mode shape pattern is investigated and it is found that the amount of decreasing of natural frequency is proportional to the normalized mode shape at position of crack. The exhibited correlation between results for damaged beam revealed that crack damage severity is proportional to zero frequency deflection and inversely proportional to first mode frequency

    Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    Get PDF
    AbstractSubsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated

    WIMAX 802.16 PHYSICAL LAYER IMPLEMENTATION AND WIMAX COVERAGE AND PLANNING.

    Get PDF
    Over the last decade, the impact of wireless communication on the way we live and carry out business has been surpassed only by impact of the internet. But wireless communications is still in its infancy and the next stage of its development will be supplementing or replacing network infrastructure that was traditionally wired. The advent and adoption of the computer and the myriad software packages available for it offered the ability to generate a new wave of communication combining art, pictures, music and words into a targeted multimedia presentation. These presentations are large so that is requires higher bandwidth transmission facilities. Coupling this with the need for mobility, the solution would be wireless data delivery putting in consideration the bandwidth request. WiMAX technology is based on the IEEE 802.16 standard, it was only recently when the first IEEE 802.16 based equipment broadband began to enter the market. The additional spectrum, bandwidth and throughout capabilities of 802.16 will remarkably improve wireless data delivery and should allows even more wireless data service areas to be deployed economically. In this Final Year Project, a study about the IEEE 802.16 standard and mainly concentrate on the 802.16 PHY Layer behaviors was performed. A Simulink based model for the 802.16 PHY Layer was built for simulation and performance evaluation of WiMAX. MATLA
    corecore